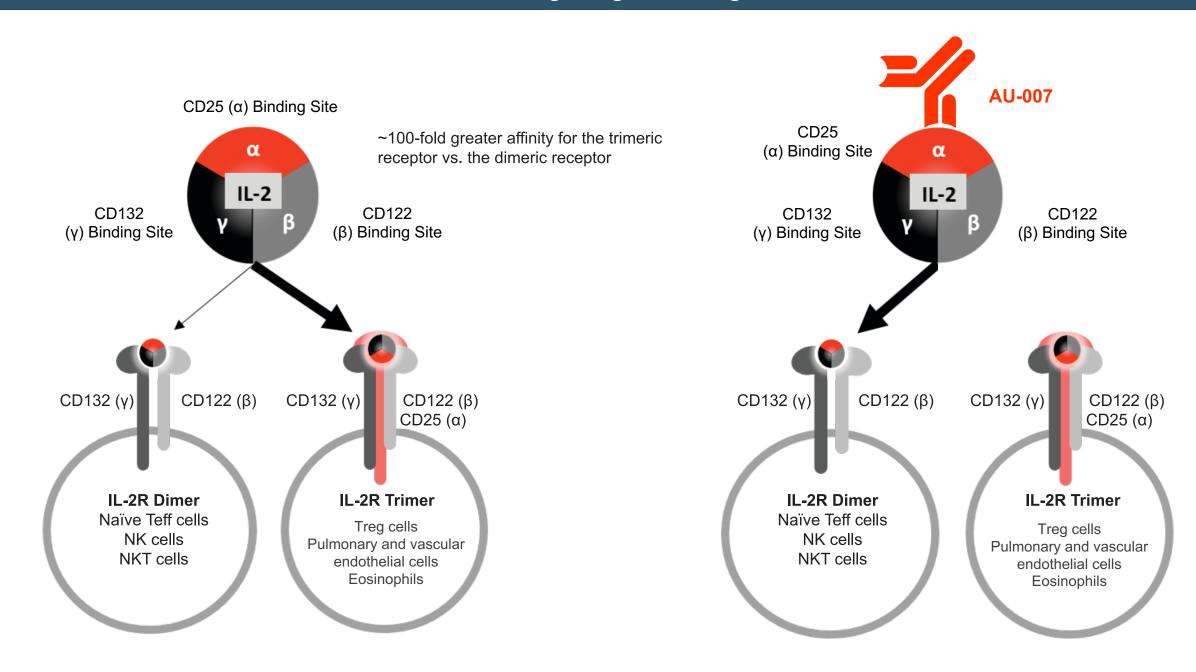
AU-007, a Human Monoclonal Antibody (mAb) That Binds to IL-2 and Inhibits CD25 Binding, Plus Low-Dose Aldesleukin, in Advanced Solid Tumors: Phase 2 Update

Meredith McKean¹, Sophia Frentzas², Drew Rasco³, John Powderly⁴, Andrew Weickhardt⁵, Alison Hiong⁶, Paul de Souza⁷, George R. Blumenschein⁸, Vinod Ganju⁹, Siwen Hu-Lieskovan¹⁰, Ganessan Kichenadasse¹¹, Catherine Oakman¹², Nehal Lakhani¹³, Timothy Wyant^{14,15}, Jenny Tang¹⁴, Lori Richards¹⁴, Aron Knickerbocker¹⁴, Inbar Amit¹⁵, Yanay Ofran^{14,15}, James Vasselli¹⁴

¹Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN; ²Department of Medical Oncology, Monash Health and Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia; ³START Center for Cancer Care, San Antonio, TX; ⁴Carolina BioOncology Institute, Huntersville, NC; ⁵Austin Health, Heidelberg, Australia; ⁶The Alfred Hospital, Melbourne, Australia; ⁹Western Sydney University, Sydney, Australia; ⁸Department of Thoracic-Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Institute, University of Utah, Salt Lake City, UT; ¹¹Southern Oncology Clinical Research Unit, Bedford Park, Australia; ¹²Western Health, Sunshine Hospital, St Albans, Australia; ¹³The START Center for Cancer Research, Grand Rapids, MI; ¹⁴Aulos Bioscience, Larkspur, CA; ¹⁵Biolojic Design, Rehovot, Israel


Abstract ID CT178
NCT05267626

AU-007 Background

Redirects IL-2 to Effector T Cells (Teff) / NK Cells and Away From Regulatory T Cells (Tregs) and Vascular Endothelium

- AU-007 is a human IgG1 monoclonal antibody designed by leveraging artificial intelligence (Biolojic Design).
- AU-007 binds interleukin-2 (IL-2) with pM affinity and completely inhibits its binding to CD25, without hindering its binding to CD122/CD132.

Redirected IL-2 Signaling on Binding to AU-007

Unique MOA Addresses the IL-2 Negative Feedback Loop

- Treatments activating effector cells against tumors are undermined by an autoinhibitory loop caused by endogenous IL-2 secreted from activated Teffs.
- AU-007 can transform the IL-2 negative feedback loop into a positive feedback loop.
- Re-engineered IL-2 therapeutics cannot address the negative feedback loop, resulting in endogenous IL-2 stimulating Treg expansion, and limiting efficacy.

Study Design and Status

This is a Phase 1/2 open label dose escalation and expansion study.

*Boost IL-2 dosing on Day 1 of each Cycle (Q8W) allowed if tumor volume unchanged or increasing

- Phase 1 dose escalation is complete. AU-007 was evaluated as monotherapy; in combination with a single loading dose
 of low-dose, subcutaneous (SQ) aldesleukin given with the initial AU-007 dose; and with both AU-007 and low-dose,
 SQ aldesleukin given every 2 weeks in patients with unresectable locally advanced or metastatic solid cancers (19
 tumor histologies).
- AU-007 is administered intravenously (IV) every 2 weeks (Q2W) in all cohorts and aldesleukin is administered SQ at much lower doses and much less frequently than the approved aldesleukin IV regimen.
- The recommended Phase 2 dose (RP2D) of AU-007 and SQ aldesleukin is being evaluated in Phase 2 expansion:
- AU-007 (9 mg/kg) + a single SQ aldesleukin loading dose (135K IU/kg) in patients with cutaneous melanoma and renal cell carcinoma (RCC).
- Two additional expansion cohorts enroll PD-L1+ non-small cell lung cancer (NSCLC) patients who have failed prior checkpoint inhibitor (CPI) therapy. One cohort enrolls patients evaluating the RP2D regimen of AU-007 + SQ aldesleukin. The second cohort enrolls patients evaluating the combination of avelumab + the RP2D regimen of AU-007 + SQ aldesleukin with a safety run-in followed by cohort expansion.
- A cohort in second-line (2L) cutaneous melanoma therapy evaluating the combination of nivolumab + the RP2D regimen of AU-007 + SQ aldesleukin, with a safety run-in followed by cohort expansion, is now enrolling patients.
- Efficacy is based on pharmacodynamic (PD) markers of immune stimulation and objective response; tumor assessments occur at the end of each 8-week cycle. Patients can receive an additional SQ aldesleukin dose at the end of each 8-week cycle based on tumor growth kinetics observed on end-of-cycle scans.

Study Cohorts and Enrollment Status

AU-007 Phase 1 Dose Escalation Phase 2 Expansion Cohorts 9 different solid tumor types were eligible Melanoma, Renal Cell Carcinoma, Non-Small Cell Lung Cancer Completed without dose-limiting toxicity RP2D AU-007 + SQ Aldesleukin 2L Melanoma and 2nd/3rd L RCC n=20-25 Now enrolling only melanoma patients 22 patients enrolled Nivolumab + RP2D AU-007 + SQ Aldesleukin RP2D Now open for enrollment as of April 2025 9 mg/kg AU-007 IV Q2W + Initial 3 patient safety run-in using 45K IU/kg aldesleukin One 135K IU/kg SQ Aldesleukin Loading Dose* RP2D AU-007 + SQ Aldesleukin **2L PD-L1+ NSCLC** n=10 4 patients enrolled Avelumab + RP2D AU-007 + SQ Aldesleukin **2L PD-L1+ NSCLC** n=20 3 patient safety run-in using 45K IU/kg aldesleukin completed

Tumor Histologies Evaluated in the Trial **Patient Demographics** Cancer Diagnosis (n, %) **Patient Characteristics** 29 (30) Melanoma (includes 2 uveal/2 acral) Mean age, years (range) 64.3 (33-89) Clear cell renal cell carcinoma Gender, n (%) 12 (13) Non-small cell lung cancer Pancreatic cancer (escalation only) Race, n (%) Colorectal cancer (escalation only) 4 (4) 4 (4) American Indian/Alaska native 1 (1) Head and neck squamous cell carcinoma Other cancer (escalation only): Urothelial, cervical, endometrial, thyroid, ECOG performance status, n (%) gall bladder, nasopharyngeal, Merkel cell carcinoma, cutaneous squamous cell carcinoma, anal squamous cell carcinoma, hepatocellular carcinoma, leiomyosarcoma, intrahepatic bile duct Mean number of prior therapies

Results

Safety		
Event (n, %)	AU-007 Monotherapy N=15	AU-007 + IL-2 N=75
Any AE	14 (93)	69 (92)
Drug-Related AEs	4 (27)	56 (75)
Drug-Related SAEs	0	5 (7)
Cytokine release syndrome (CRS)	0	3
Infusion-related reaction	0	1
Fever	0	1
Drug-Related Grade 3 or 4 AEs	0	11 (15) ¹
Lymphopenia	0	6
CRS	0	1
Anemia	0	1
Lipase elevation	0	1
Neutropenia	0	1
Maculopapular rash	0	1

Adverse Event	Grade 1 or 2 N (%)	Grade 3 or 4 N (%)
atigue	16 (21)	0
Pyrexia	16 (21)	0
Chills	14 (19)	0
nfusion-related reaction	11 (15)	0
lausea	10 (13)	0
njection site reaction	8 (11)	0
njection site erythema	6 (8)	0
CRS	6 (8)	1 (1)
ymphopenia	0	6 (8)
AST elevation	5 (7)	0
leadache	5 (7)	0
nfluenza-like illness	5 (7)	0
Anemia	4 (5)	2 (3)
ALT elevation	4 (5)	0

No dose-limiting toxicity (DLT) occurred through Phase 1 dose escalation.

Data cutoff as of March 20, 2025

¹ One patient had 2 Grade 3/4 AEs: lymphopenia and anemia

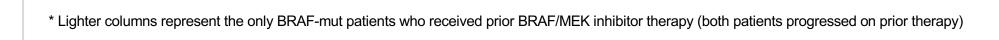
- Most drug-related adverse events (AEs) were Grade 1 or 2 except for:
- Grade 3 anemia in one patient who entered study with Grade 2 anemia and had rapid disease progression, receiving only 2 doses of study drug.
- Grade 4 CRS in one patient. It resolved without tocilizumab using steroids, IV fluids, and brief vascular
 pressor support. This patient was noted retrospectively to have subclinical elevated IL-6 (5x) serum levels
 likely due to an active case of gout at baseline.
- Grade 3 transiently elevated lipase without clinical symptoms in one patient; resolved without intervention.
- Grade 3 maculopapular rash in one patient that occurred after 6 months on study that resolved with oral prednisone and then topical steroids. The patient continues on trial.
- Grade 3 or 4 transient (3-7 days) lymphopenias that were not associated with adverse outcomes in 6
 patients. Transient lymphopenia is a known effect of IL-2 treatment as lymphocytes traffic out of blood and
 into tissue.

Pharmacokinetics

- AU-007 pharmacokinetic (PK) exposures were comparable from 4.5-12 mg/kg, administered alone or in combination with SQ aldesleukin.
- The calculated human half-life is approximately 21 days.

Early Signals of Strong Anti-Tumor Activity in Phase 1 Dose Escalation

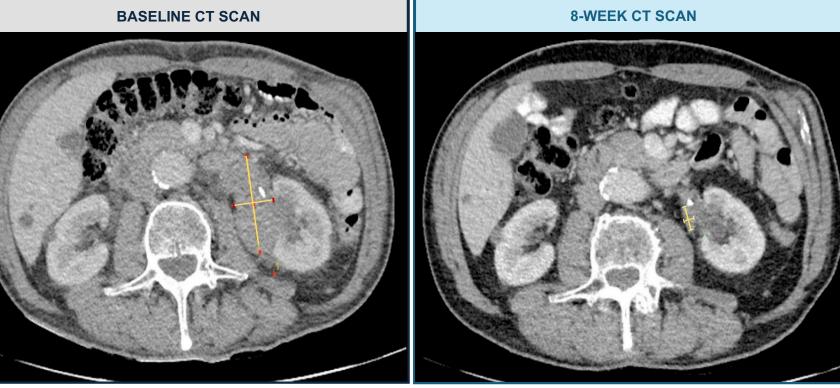
Durable Objective Tumor Reductions Observed in Phase 1 Dose Escalation in Melanoma, Bladder, Head and Neck (Nasopharyngeal), NSCLC, RCC, and Colorectal Cancer

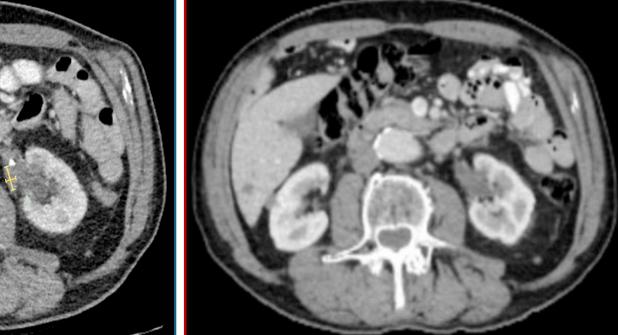

Case Report 1: Bladder Cancer Metabolic Complete Response

- 67-year-old man with metastatic bladder cancer who had progressed on an anti-PD-L1 treatment March 2023.
- The patient has non-measurable disease only (2 non-target lesions): bladder wall thickening and small pelvic lymph node. Both lesions strongly PET scan positive at baseline.
- April 2023, initial AU-007 (4.5 mg/kg) + one SQ 45K IU/kg IL-2 dose.
- March 2024, PET imaging negative, pelvic lymph node absent, and bladder thickening hard to define on CT scan.
- The response is considered an ongoing metabolic complete response (CR) for one year.
- The patient continues on treatment now for 2 years tolerating the study therapy well with only Grade 1 toxicity.

Case Report 2: Nasopharyngeal Cancer Unconfirmed Complete Response

- 55-year-old man with metastatic nasopharyngeal head and neck cancer who had progressed on 5 prior systemic therapies: cisplatin, carboplatin, paclitaxel + carboplatin, nivolumab + carboplatin [initial partial response (PR) followed by progression], and gemcitabine + carboplatin.
- The patient had a cervical spine target lesion that caused significant arm pain and loss of hand function.
- August 2023, initial AU-007 (4.5 mg/kg) + SQ 45K Q2W IU/kg IL-2 dose. After 4 months on study, the AU-007 dose was increased to 9 mg/kg (the AU-007 RP2D).
- The cervical spine lesion initially grew 12% after one cycle (2 months) but then decreased in size to 31% below baseline by the end of Cycle 2 and was a confirmed PR by Cycle 3 (-31% decrease). The lesion continued to gradually decrease in size until the lesion resolved (-100% decease) at the end of Cycle 10 after 20 months of study treatment.
- The patient's arm pain gradually resolved and he was able to regain hand function.
- The patient continues on treatment now for 20 months and is tolerating the study therapy well with only Grade 1 drug-related toxicity.


Best Response in Melanoma Patients in Phase 1 and Phase 2: Clear Evidence of Activity Observed With AU-007 Q2W + Single SQ Loading Dose of IL-2 AU-007 + Aldesleukin Loading Dose (n=12) AU-007 + Aldesleukin Loading Dose (n=12)

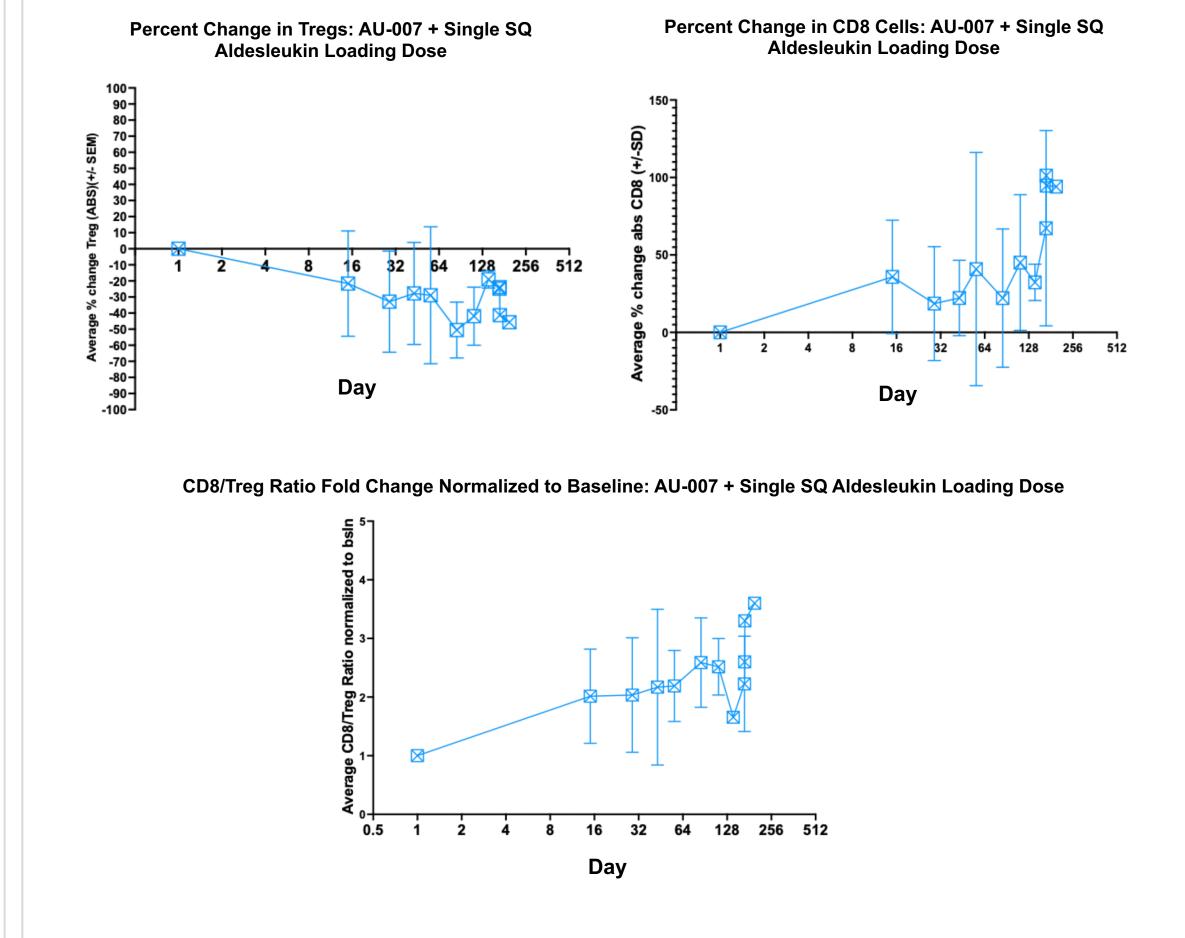


- Three melanoma patients whose tumors were refractory to either prior anti-CTLA-4 + anti-PD-1 or anti-PD-1 + anti-LAG-3 therapy had deep and durable tumor shrinkages: -48% reduction (on study for 13 months), -58% reduction (continues on study for 10+ months), and a complete response (-100% reduction) in target lesions (continues on study for 13+ months).
- A patient with rapidly progressing acral melanoma who progressed on prior anti-PD-1 therapy received the AU-007 + single low-dose, SQ aldesleukin loading dose regimen for 11 months in dose escalation (4.5 mg/kg AU-007 + 135K IU/kg SQ aldesleukin) and had initial tumor growth followed by tumor reduction to below baseline tumor size.

We are enrolling additional melanoma patients in the Phase 2 cohort receiving the loading dose schedule of IL-2. In addition, a Phase 2 combination cohort with anti-PD-1 nivolumab for 2L treatment of melanoma is now enrolling patients who have not received a prior BRAF/MEK inhibitor.

Durable 100% Shrinkage Beginning at 16 Weeks in the Single Target Lesion of a Melanoma Patient Who Had Previously Progressed Through Prior Anti-PD-1 + Anti-CTLA-4 Therapy

16-WEEK CT SCAN


Time since treatment initiation (weeks)

- 70-year-old man with large-volume metastatic disease in the retroperitoneum.
- The patient progressed on prior combination anti-PD-1 and anti-CTLA-4 treatment in December 2023.
- January 2024, the patient received AU-007 (9 mg/kg) + one 135K IU/kg IL-2 dose.
- The 100% tumor shrinkage continues through Cycle 7, 13+ months on treatment.

Best Response in RCC Patients in Phase 2 Receiving AU-007 Q2W + Single SQ Aldesleukin Loading Dose AU-007 + Aldesleukin Loading Dose (n=8) Time since treatment initiation (weeks)

Durable Tumor Shrinkages Were Observed in Checkpoint Inhibitor-Resistant or Progressed RCC

Pharmacodynamic Profile: Durable Increases in CD8 T Cells and CD8/Treg Ratios, and Corresponding Decrease in Tregs

Day 1 through Day 3 omitted as all peripheral lymphocytes decrease over these days. This is considered an effect of IL-2 causing a brief redistribution of lymphocytes out of the peripheral blood.

Treg cells decreased in the periphery in the presence of AU-007 at all dose levels

 Data support the hypothesis that AU-007 can control and redirect the endogenously produced IL-2 and the exogenously administered IL-2 to reduce the Treg population and increase circulating CD8 effector T cell populations.

Conclusions

- AU-007 Q2W has a tolerable and manageable safety profile as monotherapy and in combination with low-dose, SQ aldesleukin.
- Strong evidence of anti-tumor activity observed in heavily pre-treated patients with tumors that progressed through prior checkpoint inhibitors, including melanoma (anti-PD-1/CTLA-4 and anti-PD-1/LAG-3), RCC (anti-PD-1), bladder cancer (anti-PD-L1), HNSCC (anti-PD-1), and NSCLC (anti-PD-L1).
- AU-007 + low-dose, SQ aldesleukin continues to demonstrate a unique pharmacodynamic profile in the IL-2 therapeutic class; decrease in Tregs appears to be a critical determinant of observed efficacy.
- Phase 2 expansion cohorts evaluating the AU-007 + SQ aldesleukin RP2D continue enrolling in cutaneous melanoma and NSCLC.
- An additional expansion cohort is evaluating the combination of AU-007 + a single SQ loading dose of aldesleukin + anti-PD-L1 avelumab in NSCLC.
 A new Phase 2 cohort is now open and enrolling patients with cutaneous melanoma who have not received a prior
- BRAF/MEK inhibitor. This cohort is evaluating AU-007 + a single SQ loading dose of aldesleukin combined with anti-PD-1 nivolumab as a second-line treatment.

